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Abstract

We study the local geometry of the space of horizontal curves with endpoints freely varying in
two given submanifolds P and Q of a manifold M endowed with a distribution D ⊂ TM. We give
a different proof, that holds in a more general context, of a result by Bismut [Large Deviations and
the Malliavin Calculus, Progress in Mathematics, Birkhauser, Boston, 1984, Theorem 1.17] stating
that the normal extremizers that are not abnormal are critical points of the sub-Riemannian action
functional. We use the Lagrangian multipliers method in a Hilbert manifold setting, which leads to
a characterization of the abnormal extremizers (critical points of the endpoint map) as curves where
the linear constraint fails to be regular. Finally, we describe a modification of a result by Liu and
Sussmann [Memoirs Am. Math. Soc. 564 (1995) 118] that shows the global distance minimizing
property of sufficiently small portions of normal extremizers between a point and a submanifold.
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1. Introduction

A sub-Riemannian manifold consists of a smooth n-dimensional manifold M, and a
smooth distribution D ⊂ TM on M of constant rank n − k, endowed with a smoothly
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varying positive definite metric tensor g. The length is defined only for horizontal curves
inM, i.e., curves which are everywhere tangent toD. It was proven in [9] that a horizontal
curve which minimizes length is either a normal extremal or an abnormal extremal, where
the two possibilities are not mutually exclusive. This proof is obtained as an application of
the Pontryagin maximum principle of Optimal Control Theory; an alternative proof of this
fact obtained by variational methods is given in this paper (Corollary 5.8).

A normal extremal is defined as a curve inM that is a solution of the sub-Riemannian
Hamiltonian H(p) = 1

2g
−1(p|D, p|D) on TM∗, i.e., a curve that is the projection onM

of an integral line of the Hamiltonian flow �H . Such curves are automatically horizontal. An
abnormal extremal can be defined as a curve which is the projection onM of a non-zero
characteristic curve in the annihilator D0 ⊂ TM∗; a characteristic curve is a curve in D0

which is tangent to the kernel of the restriction to D0 of the canonical symplectic form of
TM∗.

As in the case of Riemannian geodesics, sufficiently small segments of a normal extremal
is length minimizing (see [9]); however, “most” abnormal extremals do not have any sort of
minimizing property (observe that the definition of abnormal minimizer does not involve
the metric g).

The first example of a length minimizer which is not a normal extremal was given in [11].
The goal of this paper is to discuss the theory of extremals by techniques of Calculus of
Variations and to give the basic instruments to develop a variational theory (Morse theory,
Ljusternik–Schnirelman theory) for sub-Riemannian geodesics. The results of this paper are
used in [4], where the authors consider the problem of existence and multiplicity of geodesics
joining a point and a line in a sub-Riemannian manifold (M,D, g), with codim(D) = 1.

In [2, Theorem 1.17] it is proven that the normal sub-Riemannian extremals between
two fixed points of a sub-Riemannian manifold are critical points of the sub-Riemannian
action functional. The proof is presented in the context of the Malliavin calculus, em-
ployed to study some problems connected with the asymptotics of the semi-group asso-
ciated with a hypoelliptic diffusion. For this purposes, the author’s proof is restricted to
the case that the image of the normal extremal be contained in an open subset of M on
which the distribution D is globally generated by n− k smooth vector fields. In this paper,
we reprove the result of Bismut [2, Theorem 1.17] under the more general assumptions
that:

• the vector bundleD is not necessarily trivial around the image of the normal extremizer;
• the endpoints of the normal extremizers are free to move on two submanifolds ofM.

As to the first generalization of the extremizing property of the normal extremizers, it is
interesting to observe that in the proof it is employed the Lagrangian multipliers technique
that uses time-dependent referentials of D defined in a neighborhood of the graph of any
continuous curve inM. The existence of such referentials is obtained by techniques of cal-
culus with affine connections, and it is likely that the method of time-dependent referentials
may be applied to other situations where global geometrical results are to be proven. For
instance, in [7] the author proves a Morse index theorem for normal extremizers, but in his
proof he implicitly assumes the triviality of the vector bundle D in a neighborhood of the
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curve. However, the arguments presented could be made more precise by a systematic use
of time-dependent referentials.

Another observation that is worth making about the Lagrangian multipliers is that, in the
functional setup of the method, the constraint is given by the kernel of a suitable submersion
(see formula (3)) from the set of H 1-curves in an open subset ofM taking values in the
Hilbert space of Rk-valued L2-functions. This submersion is defined using time-dependent
referentials of the annihilatorD0 ofD in the cotangent bundleTM∗, and the surprising result
is that such map fails to be a submersion precisely at the abnormal extremizers. We therefore
obtain a new variational description of the abnormal extremizers in a sub-Riemannian
manifold.

Finally, it is important to emphasize the role of the endmanifolds P and Q in the devel-
opment of the theory. An interesting result is that, if either one of the two is everywhere
transversal toD, then the set of horizontal curves between P andQ does not contain singu-
larities (Proposition 5.4); in particular, all the sub-Riemannian extremizers between P and
Q are normal. This fact can be used in several circumstances: for instance, in Corollary 5.6,
we obtain some information about the geometry of sub-Riemannian balls; moreover, it is
possible to obtain also some criteria to establish the smoothness for abnormal extremizers
(see Remark 5.7).

We outline briefly the contents of each section of this article.
In Section 2, we study the local geometry of the space of horizontal curves joining two

fixed points q0 and q1 ofM by two different techniques. On one hand, this space can be
described as the set of curves γ joining q0 and q1 satisfying θi(γ̇ ) = 0, where θ1, . . . , θk is
a local time-dependent referential for the annihilator D0 of D. On the other hand, the same
space can be obtained as the inverse image of q1 by the endpoint mapping restricted to the
set of horizontal curves emanating from q0 (see [10]). We show that these two constraints
have the same regular points; such curves are called regular and a suitable neighborhood
of them in the space of horizontal curves joining q0 and q1 has the structure of an infinite
dimensional Hilbert manifold.

In Section 3, we define the normal extremals, also called normal geodesics, in a sub-
Riemannian manifold, using the Hamiltonian setup.

In Section 4, we study the image of the differential of the endpoint mapping; to this aim
we introduce an atlas on the space of horizontal curves starting at q0.

Finally, in Section 5, we prove that a regular curve is a critical point of the sub-Riemannian
action functional if and only if it is a normal geodesic. We also study the case of curves
with endpoints varying in two submanifolds of M. If we consider the space of hori-
zontal curves joining the submanifolds P and Q, then provided that either P or Q is
transversal to D, this set is always a Hilbert manifold. Moreover, the critical points of
the sub-Riemannian action functional in this space are those normal geodesics between
P and Q whose Hamiltonian lift annihilates the tangent spaces of P and Q at its
endpoints.

To conclude the paper, we present two short appendices. In Appendix A, we prove that
every horizontal curve can be obtained as the reparameterization of an affinely parameterized
horizontal curve. In Appendix B, we adapt a proof of local optimality of normal geodesics
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due to [9, Appendix C] to prove that sufficiently small portions of normal geodesics are
length minimizers between an initial submanifold and a point.

2. The differentiable structure of the space of horizontal curves

We give a couple of preliminary results needed to the study of the geometry of the set
of horizontal paths in a sub-Riemannian manifold. The main reference for the geometry of
infinite dimensional manifolds is [8]; for the basics of Riemannian geometry, we refer to
[3].

Recall that a smooth map f : M 
→ N between Hilbert manifolds is a submersion at
x ∈ M if the differential df (x) : TxM 
→ Tf (x)N is surjective; f is a submersion if it is a
submersion at every x ∈ M .

Lemma 2.1. Let M , M1 and M2 be Hilbert manifolds and let f : M 
→ M1, g : M 
→ M2

be submersions. Let p1 ∈ M1, p2 ∈ M2 and choose x ∈ f−1(p1) ∩ g−1(p2). Then,
f |g−1(p2)

is a submersion at x, if and only if g|f−1(p1)
is a submersion at x.

Proof. We need to show that df (x)|Ker(dg(x)) is surjective onto Tf (x)M1 if and only if
dg(x)|Ker(df (x)) is surjective onto Tg(x)M2. This follows from a general fact: if T : V 
→
V1 and S : V 
→ V2 are surjective linear maps between vector spaces, then T |Ker(S) is
surjective if and only if Ker(T )+Ker(S) = V . Clearly, this relation is symmetric in S and
T , and we obtain the thesis. �

We give one more introductory result concerning the existence of time-dependent local
referentials for vector bundles defined in a neighborhood of a given curve. We need the
following definition.

Definition 2.2. Let (M, ḡ) be a Riemannian manifold and x ∈ M. A positive number
r ∈ R+ is said to be a normal radius for x if expx : Br (0) 
→ Br(x) is a diffeomorphism,
where exp is the exponential map of (M, ḡ), Br (0) the open ball of radius r around 0 ∈ TxM
and Br(x) is the open ball of radius r around x ∈M. We say that r is totally normal for x,
if r is a normal radius for all y ∈ Br(x).

By a simple argument in Riemannian geometry, it is easy to see that if K ⊂ M is a
compact subset, then there exists r > 0 which is totally normal for all x ∈ K .

Given an vector bundle π : ξ 
→ M of rank k over a manifold M, a time-dependent
local referential of ξ is a family of smooth maps Xi : U 
→ ξ , i = 1, . . . , k, defined on an
open subset U ⊆ R×M such that {Xi(t, x)}ki=1 is a basis of the fiber ξx for all (t, x) ∈ U .

Lemma 2.3. LetM be a finite dimensional manifold, let π : ξ 
→M be a vector bundle
overM and let γ : [a, b] 
→M be a continuous curve. Then, there exists an open subset
U ⊆ R ×M containing the graph of γ and a smooth time-dependent local referential of
ξ defined in U .
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Proof. We first consider the case that γ is a smooth curve. Let us choose an arbitrary
connection in ξ , an arbitrary Riemannian metric ḡ on M and a smooth extension γ :
[a − ε, b + ε] 
→M of γ with ε > 0. Since the image of γ is compact inM, there exists
r > 0 which is a normal radius for all γ (t), t ∈ [a − ε, b+ ε]. We define U to be the open
set:

U = {(t, x) ∈ R×M : t ∈]a − ε, b + ε[, x ∈ Br(γ (t))}.

Now let X̄1, . . . , X̄k be a referential of ξ along γ ; for instance, this referential can be
chosen by parallel transport along γ relative to the connection on ξ . Finally, we obtain a
time-dependent local referential for ξ in U by setting for (t, x) ∈ U and for i = 1, . . . , k,
Xi(t, x) equal to the parallel transport (relative to the connection of ξ ) of X̄i(t) along the
radial geodesic joining γ (t) and x.

The general case of a continuous curve is easily obtained by a density argument. Let
γ : [a, b] 
→ M be continuous and let r > 0 be a totally normal radius for γ (t) for all
t ∈ [a, b]. Let γ1 : [a, b] 
→M be any smooth curve such that dist(γ (t), γ1(t)) < r for all
t , where dist is the distance induced by the Riemannian metric ḡ onM. Then, if we repeat
the above proof for the curve γ1, the open set U thus obtained will contain the graph of γ ,
and we are done. �

Let us now consider a sub-Riemannian manifold, that is a triple (M,D, g) whereM is
a smooth n-dimensional manifold, D a smooth distribution inM of codimension k and g

a smoothly varying positive inner product on D.
A curve γ : [a, b] 
→M is said to beD-horizontal, or simply horizontal, if it is absolutely

continuous and if γ̇ (t) ∈ D for almost all t ∈ [a, b]. As we did in the proof of Lemma 2.3,
we will use sometimes auxiliary structures on M, which are chosen (in a non-canonical
way) once for all. We therefore assume that ḡ is a given Riemannian metric tensor onM
such that ḡ|D = g, that D1 is a k-dimensional distribution inM which is complementary
to D (for instance, D1 is the ḡ-orthogonal distribution to D), and we also assume that ∇
is a linear connection in TM which is adapted to the decomposition D ⊕ D1, i.e., the
covariant derivative of vector fields in D (resp., in D1) belongs to D (resp., to D1). For
the construction of these objects, one can consider an arbitrary Riemannian metric g̃ on
M. Then, one defines D1 as the g̃-orthogonal complement of D and ḡ|D1 = g̃|D1 ; for the
connection ∇, it suffices to choose any pair of connections ∇0 and ∇1, respectively, on the
vector bundles D and D1 and then one sets ∇ = ∇0 ⊕ ∇1. Observe that the connection ∇
constructed in this way is not torsion free; we denote by τ the torsion of ∇:

τ(X, Y ) = ∇XY − ∇YX − [X, Y ].

Using Lemma 2.3, we describe D locally as the kernel of a time-dependent Rk-valued
1-form.

Proposition 2.4. Let γ : [a, b] 
→M be a continuous curve. Then, there exists an open
subset U ⊆ R ×M containing the graph of γ and a smooth time-dependent Rk-valued
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1-form θ defined in U , with θ(t,x) : TxM 
→ Rk a surjective linear map and Dx =
Ker(θ(t,x)) for all (t, x) ∈ U .

Proof. Let ξ be the subbundle of the cotangent bundle TM∗ given by the annihilator D0

of D. Apply Lemma 2.3 to ξ and set θ = (θ1, . . . , θk), where {θi}ki=1 is a time-dependent
local referential of ξ defined in an open neighborhood of the graph of γ . �

Observe that since D1 is complementary to D for all (t, x) ∈ U the map

θ(t,x) : D1 
→ Rk

is an isomorphism.
Let us now consider the following spaces of curves inM.
We denote by L2([a, b],Rm) the Hilbert space of Lebesgue square integrableRm-valued

maps on [a, b] and by H 1([a, b],Rm) the Sobolev space of all absolutely continuous maps
x : [a, b] 
→ Rm with derivative in L2([a, b],Rm). Finally, we denote by H 1([a, b],M)

the set of curves x : [a, b] 
→M such that for any local chart (U, φ) onM, with φ : U ⊂
M 
→ Rn, and for any closed interval I ⊂ x−1(U), the map φ ◦ (x|I ) is in H 1(I,Rm). It is
well known that H 1([a, b],M) is an infinite dimensional smooth manifold modeled on the
Hilbert space H 1([a, b],Rn) (see for instance [12] for a recent reference on these issues).

For all pairs of points q0, q1 ∈M, we define the following sets of curves inM:

H 1
q0
([a, b],M)= {x ∈ H 1([a, b],M) : x(a) = q0},

H 1
q0,q1

([a, b],M)= {x ∈ H 1([a, b],M) : x(a) = q0, x(b) = q1},
H 1([a, b],D,M)= {x ∈ H 1([a, b],M) : ẋ(t) ∈ D a.e. on [a, b]},
H 1

q0
([a, b],D,M)=H 1([a, b],D,M) ∩H 1

q0
([a, b],M),

H 1
q0,q1

([a, b],D,M)=H 1([a, b],D,M) ∩H 1
q0,q1

([a, b],M). (1)

We prove that the setsH 1
q0
([a, b],M),H 1

q0,q1
([a, b],M),H 1([a, b],D,M) andH 1

q0
([a, b],

D,M), are smooth submanifolds of H 1([a, b],M) for all q0, q1 ∈M. However, in gen-
eral, the space H 1

q0,q1
([a, b],D,M), consisting of horizontal curves joining the two fixed

points q0 and q1, is not a submanifold of H 1
q0,q1

([a, b],M), and this fact is precisely the
origin of difficulties when one tries to develop a variational theory for sub-Riemannian
geodesics.

In order to see thatH 1
q0
([a, b],M) andH 1

q0,q1
([a, b],M) are submanifolds ofH 1([a, b],

M), simply observe that the map

Ea,b : γ 
→ (γ (a), γ (b))

is a submersion of H 1([a, b],M) intoM×M.
Then, H 1

q0
([a, b],M) = E−1

a,b({q0} ×M) and H 1
q0,q1

([a, b],M) = E−1
a,b(q0, q1) are

smooth submanifolds of H 1([a, b],M).
As to the regularity of H 1

q0
([a, b],D,M), we will now show that this set can be covered

by a family of open subset {Uα} of H 1
q0
([a, b],M) such that each intersection H 1

q0
([a, b],
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D,M)∩Uα is the inverse image of a submersion of Uα in the Hilbert space L2([a, b],Rk).
The regularity of H 1([a, b],D,M) will follow by a similar argument.

To this aim, let γ0 be a fixed curve inH 1
q0
([a, b],M) and letUγ0 ⊂ R×M be an open set

containing the graph of γ0 and that is the domain of the map θ of Proposition 2.4. Denote by
H 1

q0
([a, b],M, Uγ0) the open subset of H 1

q0
([a, b],M) consisting of those curves whose

graphs is contained in Uγ0 :

H 1
q0
([a, b],M, Uγ0) = {γ ∈ H 1

q0
([a, b],M) : (t, γ (t)) ∈ Uγ0 for all t ∈ [a, b]}.

(2)

Let Θ : H 1
q0
([a, b],M, Uγ0) 
→ L2([a, b],Rk) be the smooth map defined by

Θ(γ )(t) = θ(t,γ (t))(γ̇ (t)). (3)

Clearly, H 1
q0
([a, b],M, Uγ0) ∩H 1

q0
([a, b],D,M) = Θ−1(0).

Proposition 2.5. Θ is a submersion.

Proof. Clearly Θ is smooth because θ is smooth. To compute the differential of Θ , we
use the connection ∇ adapted to the decomposition TM = D ⊕ D1 introduced above.
Let γ ∈ H 1

q0
([a, b],M, Uγ0) be fixed and let V ∈ TγH

1
q0
([a, b],M), i.e., V is a vector

field of class H 1 along γ with V (a) = 0. We write V = VD + VD1 with VD(t) ∈ D and
VD1(t) ∈ D1 for all t ; using the properties of ∇, we compute easily

dΘ(γ )[V ](t) = [∇V θ ](t,γ (t))(γ̇ (t))+ θ(t,γ (t))(∇γ̇ (t)V )+ θ(t,γ (t))(τ (V (t), γ̇ (t))),

(4)

where ∇V θ is the covariant derivative of θ(t,·).
Let now f ∈ L2([a, b],Rk) be fixed; for the surjectivity of dΘ(γ ), we want to solve the

equation in V : dΘ(γ )[V ] = f . To this aim, we choose VD0 = 0, and we get

θ(t,γ (t))(∇γ̇ (t)VD1)+ [∇VD1
θ ](t,γ (t))(γ̇ (t))+ θ(t,γ (t))(τ (VD1(t), γ̇ (t))) = f. (5)

Since θ(t,γ (t)) : (D1)γ (t) 
→ Rk is an isomorphism, (5) is equivalent to a first order linear
differential equation in VD1 , that admits a unique solution satisfying VD1(a) = 0. Observe
that since γ ∈ H 1([a, b],M) by (5), we get that V is also of class H 1, and we are
done. �

Corollary 2.6. H 1([a, b],D,M) and H 1
q0
([a, b],D,M) are smooth submanifolds of

H 1([a, b],M).

We now consider the endpoint mapping end: H 1
q0
([a, b],M) 
→M given by

end(γ ) = γ (b).

It is easy to see that end is a submersion, hence we have the following corollary.
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Corollary 2.7. Let γ0 ∈ H 1
q0
([a, b],M) be fixed and letH 1

q0
([a, b],M, Uγ0),Θ be defined

as in (2) and (3).
Then, for allγ ∈ Θ−1(0)∩end−1(q1) = H 1

q0,q1
([a, b],D,M), the restrictionΘ|H 1

q0
([a,b],

M,Uγ0 )∩H 1
q0,q1

([a,b],M) is a submersion if and only if the restriction end|H 1
q0
([a,b],D,M)

is a submersion.

Proof. It follows immediately from Lemma 2.1 and Proposition 2.5. �

Definition 2.8. A curve γ ∈ H 1
q0,q1

([a, b],D,M) is said to be regular if the restriction
end|H 1

q0
([a,b],D,M) is a submersion at γ . If γ is not regular, then it is called an abnormal

extremal.

Observe that the notion of abnormal extremality is not related to any sort of extremality
with respect to the length or the action functional, but rather to lack of regularity in the
geometry of the space of horizontal paths. The smoothness of length minimizing abnormal
extremals is an open question.

3. Normal geodesics

In order to define the normal geodesics in a sub-Riemannian manifold, we introduce a
Hamiltonian setup in TM∗ as follows.

Let us consider the cotangent bundle TM∗ endowed with its canonical symplectic form
ω. Recall that ω is defined by ω = −dϑ , ϑ being the canonical 1-form on TM∗ given
by ϑp(ρ) = p(dπp(ρ)), where π : TM∗ 
→ M is the projection, p ∈ TM∗ and ρ ∈
TpTM∗. Let H : TM∗ 
→ R be a smooth function; we call such a function a Hamiltonian
in (TM∗, ω). The Hamiltonian vector field ofH is the smooth vector field on TM∗ denoted
by �H and defined by the relation dH(p) = ω( �H(p), ·); the integral curves of �H are called
the solutions of the Hamiltonian H . With a slight abuse of terminology, we will say that
a smooth curve γ : [a, b] 
→ M is a solution of the Hamiltonian H if it admits a lift
Γ : [a, b] 
→ TM∗ that is a solution of H .

More in general, one can consider time-dependent Hamiltonian functions onTM∗, which
are smooth maps defined on an open subset U of R× TM∗. In this case, the Hamiltonian
flow �H is a time-dependent vector field in TM∗, and its integral curves in TM∗ are again
called the solutions of the Hamiltonian H .

A symplectic chart in TM∗ is a local chart taking values inRn⊕Rn∗ whose differential at
each point is a symplectomorphism from the tangent space Tp(TM∗) toRn⊕Rn∗ endowed
with the canonical symplectic structure. Given a chart q = (q1, . . . , qn) inM, we get a
symplectic chart (q, p) onTM∗, wherep = (p1, . . . , pn) is defined bypi(α) = α(∂/∂qi).
We denote by {∂/∂qi, ∂/∂pj }, i, j = 1, . . . , n, the corresponding local referential for
T (TM∗), and by {dqi, dpj } the local referential of T (TM∗)∗. We have

ω =
n∑

i=1

dqi ∧ dpi, �H =
n∑

i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
.
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In the symplectic chart (q, p), a solution Γ (t) = (q(t), p(t)) of the Hamiltonian H is the
solution of the Hamilton equations

dq

dt
= ∂H

∂p
,

dp

dt
= −∂H

∂q
. (6)

Definition 3.1. A normal geodesic in the sub-Riemannian manifold (M,D, g) is a curve
γ : [a, b] 
→ M that admits a lift Γ : [a, b] 
→ TM∗ which is a solution of the
sub-Riemannian Hamiltonian H : TM∗ 
→ R given by

H(p) = 1
2g

−1(p|D, p|D), (7)

where g−1 is the induced inner product in D∗. In this case, we say that Γ is a Hamiltonian
lift of γ .

The Hamilton equations for the sub-Riemannian Hamiltonian (7) will be computed ex-
plicitly in Section 5 (formula (31)). It will be seen that the first of the two equations means
that the solutions inM are horizontal curves and that Γ |D = g(γ̇ , ·) (see Remark 5.3).

We remark that a normal geodesic need not be regular in the sense of Definition 2.8,
hence there are geodesics that are at the same time normal and abnormal. Observe also
that, in general, a normal geodesic γ may admit more than one Hamiltonian lift Γ . This
phenomenon occurs precisely when γ is at the same time a normal geodesic and an abnormal
extremizer.

4. Abnormal extremals and the endpoint mapping

In this section, we give necessary and sufficient conditions for a curve to be an abnormal
extremal in terms of the symplectic structure of the cotangent bundle TM∗. We describe
a coordinate system in the Hilbert manifold H 1

q0
([a, b],M) which is compatible with the

submanifold H 1
q0
([a, b],D,M). This will provide an explicit description of the tangent

space TγH 1
q0
([a, b],D,M) which will allow us to compute the image of the differential of

the restriction of the endpoint mapping to H 1
q0
([a, b],D,M).

LetM be a manifold endowed with a distributionD, with dim(M) = n and codim(D) =
k. The sub-Riemannian metric will be irrelevant in the theory of this section. LetU ⊂ R×M
be an open set and let X1, . . . , Xn be a time-dependent referential of TM defined in U . We
say that such referential is adapted to the distributionD ifX1, . . . , Xn−k forms a referential
for D.

It follows easily from Lemma 2.3 that given a continuous curve γ : [a, b] 
→M, there
exists an open set U ⊂ R×M containing the graph of γ and a referential of TM defined
in U which is adapted to D. Namely, one chooses a vector subbundle D1 ⊂ TM such that
TM = D ⊕D1 and then apply Lemma 2.3 to both D and D1.

Given a time-dependent referential of TM defined in an open set U ⊂ R×M, we are
going to associate to it a map

B : H 1([a, b],M, U) 
→ L2([a, b],Rn),
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where H 1([a, b],M, U) denotes the open set in H 1([a, b],M) consisting of curves whose
graph is contained in U . We define B by

B(γ ) = h, (8)

where h = (h1, . . . , hn) is given by

γ̇ (t) =
n∑

i=1

hi(t)Xi(t, γ (t)) (9)

for almost all t ∈ [a, b]. The map B is smooth. Its differential is computed in the following
lemma.

Lemma 4.1. Let γ ∈ H 1([a, b],M, U) and v be anH 1 vector field along γ . Seth = B(γ ),
z = dBγ (v). We define a time-dependent vector field in U by

X(t, x) =
n∑

i=1

hi(t)Xi(t, x), (t, x) ∈ U, (10)

and a vector field w along γ by

w(t) =
n∑

i=1

zi(t)Xi(t, γ (t)). (11)

Given a chart (q1, . . . , qn) defined in an open setV ⊂M, denote by ṽ(t), X̃(t, q) and w̃(t)

the representation in coordinates of v, X and w, respectively. Then, the following relation
holds:

d

dt
ṽ(t) = ∂X̃

∂q
(t, γ (t))ṽ(t)+ w̃(t) (12)

for all t ∈ [a, b] such that γ (t) ∈ V .

Proof. Simply consider a variation of γ with variational vector field v and differentiate
relation (9) with respect to the variation parameter, using the local chart. �

Corollary 4.2. The restriction of the map B to the set

H 1
q0
([a, b],M, U) = H 1

q0
([a, b],M) ∩H 1([a, b],M, U)

is a local chart, taking values in an open subset of L2([a, b],Rn).

Proof. For γ ∈ H 1
q0
([a, b],M) the tangent space TγH

1
q0
([a, b],M) consists of those H 1

vector fields v along γ such that v(a) = 0. For a fixed z ∈ L2([a, b],Rn), formula (12) is
a first order linear differential equation for ṽ; Lemma 4.1 and standard results of existence
and uniqueness of solutions of linear differential equations imply that the differential ofB at
any γ ∈ H 1

q0
([a, b],M, U) maps the tangent space TγH 1

q0
([a, b],M) isomorphically onto
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L2([a, b],Rn). It follows from the inverse function theorem thatB is a local diffeomorphism
in H 1

q0
([a, b],M, U). Finally, by standard results on uniqueness of solutions of differential

equations, we see that the restriction of B to H 1
q0
([a, b],M, U) is injective. �

If the referential X1, . . . , Xn defining B is adapted to D, then a curve γ in H 1
q0
([a, b],

M, U) is horizontal if and only if B(γ ) = h satisfies hn−k+1 = · · · = hn = 0. This means
that B is a submanifold chart for H 1

q0
([a, b],D,M). This observation will provide a good

description of the tangent space TγH
1
q0
([a, b],D,M).

Let γ ∈ H 1
q0
([a, b],M, U) and set h = B(γ ). Define a time-dependent vector field X in

U as in (10). By Lemma 4.1, the kernel Ker dBγ is the vector subspace of TγH 1([a, b],M)

consisting of those v, whose representation in coordinates ṽ satisfy the homogeneous part
of the linear differential equation (12), namely

d

dt
ṽ(t) = ∂X̃

∂q
(t, γ (t))ṽ(t). (13)

By the uniqueness of the solution of a Cauchy problem, it follows that for all t ∈ [a, b], the
evaluation map

Ker dBγ � v 
→ v(t) ∈ Tγ (t)M

is an isomorphism. Therefore, for every t ∈ [a, b], we can define a linear isomorphism
Φt : Tγ (a)M 
→ Tγ (t)M by

Φt(v(a)) = v(t), v ∈ Ker dBγ . (14)

Using the maps Φt , we can give a coordinate free description of the differential of B, based
on the “method of variation of constants” for solving non-homogeneous linear differential
equations.

Lemma 4.3. Let γ ∈ H 1
q0
([a, b],M, U) and v ∈ TγH

1
q0
([a, b],M). Set h = B(γ ) and

z = dBγ (v). Define the objects X, w and Φt as in (10), (11) and (14), respectively. Then,
the following equality holds:

v(t) = Φt

∫ t

a

Φ−1
s w(s) ds. (15)

Proof. The right-hand side of (15) vanishes at t = a, therefore, to conclude the proof,
one has to show only that its representation in local coordinates satisfies the differential
equation (12). This follows by direct computation, observing that the representation in local
coordinates of the maps Φt is a solution of the homogeneous linear differential equation
(13). �

Corollary 4.4. Suppose that the referential X1, . . . , Xn defining B is adapted to D. Let γ
be a horizontal curve in H 1

q0
([a, b],M, U). Then, the tangent space TγH 1

q0
([a, b],D,M)
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consists of all vector fields v of the form(15), where w runs over all L2 horizontal vector
fields along γ .

Proof. Follows directly from Lemma 4.3, observing that B is a submanifold chart for
H 1

q0
([a, b],D,M), as remarked earlier. �

We now relate the differential of the endpoint map with the symplectic structure of TM∗.
We denote by D0 ⊂ TM∗ the annihilator of D. The restriction ω|D0 of the canonical
symplectic form of TM∗ to D0 is in general no longer non-degenerate and its kernel
Ker(ω|D0)(p) at a point p ∈ D0 may be non-zero. We say that an absolutely continuous
curve η : [a, b] 
→ D0 is a characteristic curve for D if

η̇(t) ∈ Ker(ω|D0)(η(t))

for almost all t ∈ [a, b].
We take a closer look at the kernel of ω|D0 . Let Y be a horizontal vector field in an open

subset ofM. We associate to it a Hamiltonian function HY defined by

HY (p) = p(Y (x)),

where x = π(p). We can now compute the ω-orthogonal complement of TpD0 in TpTM∗.
Recall that �HY denotes the corresponding Hamiltonian vector field in TM∗.

Lemma 4.5. Let p ∈ TM∗ and set x = π(p). The ω-orthogonal complement of TpD0 in
TpTM∗ is mapped isomorphically by dπp onto Dx . Moreover, if Y is a horizontal vector
field defined in an open neighborhood of x in M, then �HY (p) is the only vector in the
ω-orthogonal complement of TpD0 which is mapped by dπp into Y (x).

Proof. The function HY vanishes onD0 and therefore ω( �HY , ·) = dHY vanishes on TpD0.
The conclusion follows by observing that since ω is non-degenerate, the ω-orthogonal
complement of TpD0 in TpTM∗ has dimension n− k = dim(Dx). �

Corollary 4.6. The projection of a characteristic curve of D is automatically horizontal.
Moreover, let γ : [a, b] 
→M be a horizontal curve, let X1, . . . , Xn be a time-dependent
referential of TM adapted to D, defined in an open subset U ⊂ R ×M containing the
graph of γ . Define a time-dependent vector field X in U as in (10). Let η : [a, b] 
→ D0 be
a curve with π ◦ η = γ . Then η is a characteristic curve ofD, if and only if η is an integral
curve of �HX.

Proof. For p ∈ D0, the kernel of the restriction of ω to TpD0 is equal to the intersection of
TpD0 with the ω-orthogonal complement of TpD0 in TpTM∗. By Lemma 4.5, it follows
that the kernel ofω|D0 projects by dπ intoD, and therefore the projection of a characteristic
is always horizontal.
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For the second part of the statement, observe that for t ∈ [a, b], X(t, ·) is a horizontal
vector field in an open neighborhood of γ (t) whose value at γ (t) is γ̇ (t). Therefore η̇(t) is
ω-orthogonal to Tη(t)D0 if and only if η̇(t) = �HX(η(t)). �

Corollary 4.7. Let γ : [a, b] 
→ M be a horizontal curve and let X1, . . . , Xn be a
time-dependent referential of TM adapted to D, defined in an open subset U ⊂ R ×M
containing the graph of γ . Let X be defined as in (10). A curve η : [a, b] 
→ D0 with
π ◦ η = γ is a characteristic of D if and only if its representation η̃(t) ∈ Rn∗ in any
coordinate chart of M satisfies the following first order homogeneous linear differential
equation:

d

dt
η̃(t) = −∂X̃

∂q
(t, γ (t))∗η̃(t), (16)

where X̃ is the representation in coordinates of X.

Proof. Simply use Corollary 4.6 and write the Hamilton equations of �HX in co-
ordinates. �

Differential equation (16) is called the adjoint system of (13). It is easily seen that η̃ is
a solution of (16) if and only if η̃(t)ṽ(t) is constant for every solution ṽ of (13). From this
observation, we get the following lemma.

Lemma 4.8. Let γ : [a, b] 
→M be a horizontal curve and suppose that the referential
X1, . . . , Xn defining Φt in (14) is adapted to D. Then a curve η : [a, b] 
→ D0 with
π ◦ η = γ is a characteristic forD if and only if η(t) = (Φ∗

t )
−1(η(a)) for every t ∈ [a, b].

Proof. By Corollary 4.7 and the observation above we get that η is a characteristic if and
only if η(t)v(t) is constant for every v ∈ Ker dBγ . The conclusion follows. �

We can finally prove the main theorem of this section.

Theorem 4.9. The annihilator of the image of the differential of the restriction of the
endpoint mapping to H 1

q0
([a, b],D,M) is given by

Im(d(end|H 1
q0
([a,b],D,M))(γ ))

0

= {η(b) : η is a characteristic for D and π ◦ η = γ }. (17)

Proof. By Corollary 4.4, we have

Im(d(end|H 1
q0
([a,b],D,M))(γ ))

=
{
Φb

∫ b

a

Φ−1
s w(s) ds : w is anL2 horizontal vector field along γ

}
. (18)

By Lemma 4.8, if η is a characteristic with π ◦ η = γ then η(b) annihilates the right-hand
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side of (18). Namely

η(b)

(
Φb

∫ b

a

Φ−1
s w(s) ds

)
= (Φ∗

b )
−1(η(a))

(
Φb

∫ b

a

Φ−1
s w(s) ds

)

= η(a)

(∫ b

a

Φ−1
s w(s) ds

)
=

∫ b

a

η(a)Φ−1
s w(s) ds

=
∫ b

a

(Φ∗
s )
−1η(a)w(s) ds =

∫ b

a

η(s)w(s) ds = 0. (19)

We have to prove that if η0 ∈ Tγ (b)M∗ annihilates the right-hand side of (18) then there
exists a characteristic η with π ◦ η = γ and η(b) = η0.

Define η by η(t) = (Φ∗
t )
−1(Φ∗

b (η0)) for all t ∈ [a, b]. By Lemma 4.8, we only have
to prove that η([a, b]) ⊂ D0. Computing as in (19), we see that since η0 annihilates the
right-hand side of (18), then

∫ b

a

η(s)w(s) ds = 0

for any horizontal L2 vector field w along γ . The conclusion follows. �

Corollary 4.10. The image of the differential of the restriction of the endpoint mapping to
H 1

q0
([a, b],D,M) contains Dγ (b).

Proof. By Theorem 4.9, the annihilator of the image of the differential of the restriction of
the endpoint mapping to H 1

q0
([a, b],D,M) is contained in the annihilator of Dγ (b). The

conclusion follows. �

The next corollary, which is obtained easily from (17), gives a characterization of singular
curves in terms of characteristics.

Corollary 4.11. An H 1 curve γ : [a, b] 
→M is singular if and only if it is the projection
of a non-zero characteristic of D.

Observe that by Lemma 4.8 a characteristic either never vanishes or is identically zero.

5. The normal geodesics as critical points of the action functional

In this section, we prove that the normal geodesics in (M,D, g) correspond to the critical
points of the sub-Riemannian action functional defined in the space of horizontal curves
joining two subsets ofM. To this aim, we need to introduce a Lagrangian formalism that
will be related to the Hamiltonian setup described in Section 3 via the Legendre transform.

We consider the sub-Riemannian action functional EsR defined in the space H 1([a, b],
D,M):

EsR(γ ) = 1

2

∫ b

a

g(γ̇ , γ̇ ) dt. (20)
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The problem of minimizing the action functionalEsR is essentially equivalent to the problem
of minimizing length (see Lemma 5.5 and Corollary A.3).

By Corollary 2.7, given q0, q1 ∈ M, the set H 1
q0,q1

([a, b],D,M) has the structure of
a smooth manifold around the regular curves. It is easy to prove that EsR is smooth in
any open subset of H 1

q0,q1
([a, b],D,M) which has the structure of a smooth manifold;

such an open set will be called a regular subset of H 1
q0,q1

([a, b],D,M). We will say that

a curve γ ∈ H 1
q0,q1

([a, b],D,M) is a critical point of EsR if it lies in a regular subset

of H 1
q0,q1

([a, b],D,M) and if it is a critical point of the restriction of EsR to this regular
subset. The purpose of this section is to prove that the normal geodesics coincide with the
critical points of the EsR in H 1

q0,q1
([a, b],D,M).

To this goal, we will consider an extensionE ofEsR to the smooth manifoldH 1([a, b],M)

defined in terms of the Riemannian extension ḡ of the sub-Riemannian metric g that was
introduced in Section 2:

E(γ ) = 1

2

∫ b

a

ḡ(γ̇ , γ̇ ) dt, γ ∈ H 1([a, b],M).

Let γ ∈ H 1
q0,q1

([a, b],D,M) be a regular curve and let θ be the map defined in a neigh-
borhood of the graph of γ given in Proposition 2.4. By the method of Lagrange multipliers,
we know that γ is a critical point of EsR if and only if there exists λ ∈ L2([a, b],Rn) such
that γ is a critical point in H 1

q0,q1
([a, b],M) of the action functional

Eλ(γ ) = E(γ )−
∫ b

a

λ(t) · θ(t,γ (t))(γ̇ (t)) dt. (21)

We will see in the proof of Proposition 5.2 that the Lagrange multiplier λ associated to a
critical point of EsR is indeed a smooth map.
Eλ is the action functional of the time-dependent Lagrangian Lλ defined on an open

subset of TM given by

Lλ(t, v) = 1
2 ḡ(v, v)− λ(t) · θ(t,m)(v), v ∈ TmM. (22)

The Lagrangian Lλ is L1 in the variable t , moreover, for (almost) all t ∈ [a, b], the map
v 
→ Lλ(t, v) is smooth. Therefore the critical points of Eλ are curves satisfying the
Euler–Lagrange equations; in a chart q = (q1, . . . , qn), the equations are

∂Lλ
∂q

− d

dt

∂Lλ
∂q̇

= 0. (23)

We recall that if L : U ⊂ R × TM is a time-dependent Lagrangian defined on an open
subset of R× TM, the fiber derivative of L is the map FL : U 
→ R× TM∗ given by

FL(t, v) = (t, d(L|U∩Tπ(v)M)(v)),

where π : TM 
→ M is the projection. For t ∈ R, we denote by Ut the open subset of
TM consisting of those v’s such that (t, v) ∈ U . The Lagrangian L is said to be regular if,
for each t , the map v 
→ FL(t, v) is a local diffeomorphism; L is said to be hyper-regular
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if v 
→ FL(t, v) is a diffeomorphism between Ut and an open subset of TM∗. Associated
to a hyper-regular Lagrangian L in U ⊂ R × TM, one has a Hamiltonian H defined on
the open subset FL(U) by the formula

H(FL(t, v)) = FL(t, v)v − L(t, v), (t, v) ∈ U.

This procedure is called the Legendre transform(see [1, Chapter 3]). If L is a hyper-regular
Lagrangian and H is the associated Hamiltonian, then the solutions of the Euler–Lagrange
equations (23) of L correspond, via FL, to the solutions of the Hamilton equations of H ,
i.e., a smooth curve γ : [a, b] 
→M is a solution of (23) if and only if Γ = FL ◦ (γ, γ̇ ) is
a solution of the Hamiltonian H .

Let us show now that this formalism applies to the case of the Lagrangian Lλ of (22).

Lemma 5.1. The Lagrangian Lλ is hyper-regular.

Proof. From (22), the fiber derivative FLλ is easily computed as

FLλ(t, v) = ḡ(v, ·)− λ(t) · θ(t,m) ∈ TmM
∗. (24)

For each t ∈ [a, b], the map FLλ(t, ·) : TmM 
→ TmM∗ is clearly a diffeomorphism,
whose inverse is given by

TmM
∗ � p 
→ ḡ−1(p + λ(t) · θ(t,m)) ∈ TmM. � (25)

We are finally ready to prove the following proposition.

Proposition 5.2. Let γ be a regular curve in H 1
q0,q1

([a, b],D,M). Then, γ is a critical
point of EsR if and only if it is a normal sub-Riemannian geodesic in (M,D, g).

Proof. A critical point of EsR is a curve satisfying the Euler–Lagrange equations (23)
associated to the Lagrangian Lλ of (22). By Lemma 5.1, Lλ is hyper-regular, hence the
solutions of (23) correspond via FLλ to the solutions of the associated Hamiltonian Hλ

computed as follows. First, for v ∈ TmM, we have

FLλ(t, v)v − Lλ(t, v)= ḡ(v, v)− λ(t) · θ(t,m)(v)− 1
2 ḡ(v, v)+ λ(t) · θ(t,m)(v)

= 1
2 ḡ(v, v).

Then, using (25), we compute

Hλ(t, q, p) = 1
2 ḡ

−1(p + λ(t) · θ(t,q), p + λ(t) · θ(t,q)). (26)

To prove Proposition 5.2, we need to show that if γ is an absolutely continuous curve in
M, then γ is horizontal and it is a solution for the Hamilton equations associated to the
HamiltonianHλ for some λ if and only if it is a solution of the Hamilton equations associated
to the sub-Riemannian Hamiltonian H of formula (7).
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The Hamilton equations of Hλ are computed as follows:

dq

dt
= ḡ−1(p + λ(t) · θ(t,q)), dp

dt
= −ḡ−1

(
λ(t) · ∂θ(t,q)

∂q
, p + λ(t) · θ(t,q)

)
.

(27)

From the horizontality of dq/dt , using the first equation of (27), we get

(p + λ(t) · θ(t,q))|D1 = 0,

and since θ |D1 is an isomorphism, we get an explicit expression for the Lagrange multiplier
λ:

λ(t) = −p(t) ◦ [θ(t,q)|D1 ]−1. (28)

Observe that by a standard boot-strap argument from (28) it follows easily that λ is smooth.
We now write the Hamilton equations of the sub-Riemannian Hamiltonian and of Hλ

using a suitable time-dependent referentialX1, . . . , Xn ofTM. The choice of the referential
is done as follows. Let θ1, . . . , θk be a time-dependent referential of the annihilator D0 =
(D⊥)∗ which is orthonormal with respect to ḡ−1. For the orthogonality, it suffices to consider
any referential ofD0 and then to orthonormalize it by the method of Gram–Schmidt. Then,
let Xn−k+1, . . . , Xn be the referential of D⊥ obtained by dualizing θ1, . . . , θk . Finally, let
X1, . . . , Xn−k be any orthonormal referential of D, time-dependent or not.

In the referential X1, . . . , Xn for i = 1, . . . , n− k, we have

[θ(t,q)|D1 ]−1
[
∂θ(t,q)

∂q
Xi

]
=

k∑
j=1

[
∂θj

∂q
(t, q)Xi

]
Xn−k+j . (29)

We can rewrite (27) as

dq

dt
=

n−k∑
i=1

p(Xi)Xi +
n∑

i=n−k+1

(p(Xi)+ λi−n+k)Xi,

dp

dt
=−

n−k∑
i=1

p(Xi)p

(
∂Xi

∂q

)
−

n∑
i=n−k+1

2(p(Xi)+ λi−n+k)p
(
∂Xi

∂q

)
, (30)

where λ = (λ1, . . . , λk). On the other hand, the Hamilton equations for H are written as

dq

dt
=

n−k∑
i=1

p(Xi)Xi,
dp

dt
= −

n−k∑
i=1

p(Xi)p

(
∂Xi

∂q

)
. (31)

Now, if γ is horizontal and it satisfies (30) for some λ it follows that the second sum of the
first equation in (30) is zero, and therefore γ satisfies also (31). Conversely, if γ satisfies
(31), then γ is horizontal, and defining λ by (28), it is easily seen that γ is a solution
of (27). �

Remark 5.3. It follows easily from (31) that if γ is a normal geodesic and Γ is a Hamil-
tonian lift of γ , then Γ |D = g(γ̇ , ·).
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We now consider the case of sub-Riemannian geodesics with endpoints varying in two
submanifolds ofM.

Proposition 5.4. Let (M,D, g) be a sub-Riemannian manifold, let P,Q ⊂M be smooth
submanifolds ofM and assume thatQ is transversal to D, i.e., TqQ+Dq = TqM for all
q ∈ Q. Then, the set

H 1
P,Q([a, b],D,M) = {x ∈ H 1([a, b],D,M) : x(a) ∈ P, x(b) ∈ Q}

is a smooth submanifold ofH 1([a, b],M). Moreover, the critical points of the sub-Riemannian
action functional EsR in H 1

P,Q([a, b],D,M) are precisely the normal geodesics γ joining
P and Q that admit a lift Γ : [a, b] 
→ TM∗ satisfying the boundary conditions:

Γ (a) ∈ Tγ (a)P
0, Γ (b) ∈ Tγ (b)Q

0. (32)

Proof. The fact that H 1
P,Q([a, b],D,M) is a smooth manifold follows easily from the

transversality of Q and Corollary 4.10.
The proof of the second part of the statement is analogous to the proof of Proposition 5.2,

keeping in mind that the critical points of the action functional associated to a hyper-regular
Lagrangian in the space of curves joining P and Q are the solutions of the Hamilton
equations whose Hamiltonian lift vanishes on the tangent spaces of P and Q. �

Obviously, the role of P and Q in Proposition 5.4 can be interchanged, and the same
conclusion holds in the case that P is transversal to D.

As a consequence of Proposition 5.4, we get some information on the geometry of
sub-Riemannian balls. Given a horizontal curve γ : [a, b] 
→ M, we define ;(γ ) to
be its length:

;(γ ) =
∫ b

a

g(γ̇ , γ̇ )1/2 dt.

For q0, q1 ∈M, we set

dist(q0, q1) = inf{;(γ ) : γ is a horizontal curve joining q0 and q1} ∈ [0,+∞],

where such number is infinite if q0 and q1 cannot be joined by any horizontal curve. A
horizontal curve γ : [a, b] 
→M is said to be length minimizing between two subsets P
and Q ofM if γ (a) ∈ P , γ (b) ∈ Q and

;(γ ) = inf
q0∈P
q1∈Q

dist(q0, q1).

A horizontal curve γ is said to be affinely parameterized if g(γ̇ , γ̇ ) is almost everywhere
constant. Every horizontal curve is the reparameterization of an affinely parameterized
horizontal curve (see Corollary A.3). Since the sub-Riemannian Hamiltonian is constant on
its integral curves, it follows that every normal geodesic is affinely parameterized. Moreover,
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using the Hamilton equations (31), it is easy to see that an affine reparameterization of a
normal geodesic is again a normal geodesic.

We relate the problem of minimization of the length and of the action functional by the
following lemma.

Lemma 5.5. Let γ : [a, b] 
→ M be a horizontal curve joining the submanifolds P
and Q. Then, γ is a minimum of EsR in H 1

P,Q([a, b],D,M) if and only if γ is affinely
parameterized and γ is a length minimizer between P and Q.

Proof. By Cauchy–Schwartz inequality, we have

;(γ )2 ≤ 2(b − a)EsR(γ )
2,

where the equality holds if and only if γ is affinely parameterized. If γ is affinely parame-
terized and it minimizes length, then for any µ ∈ H 1

P,Q([a, b],D,M), we have

EsR(γ ) = ;(γ )2

2(b − a)
≤ ;(µ)2

2(b − a)
≤ EsR(µ).

Hence, γ is a minimum of EsR.
Conversely, suppose that γ is a minimum of EsR. There exists an affinely parameterized

horizontal curve µ : [a, b] 
→M such that γ is a reparameterization of µ (see Corollary
A.3). We have

EsR(γ ) ≤ EsR(µ) = ;(µ)2

2(b − a)
= ;(γ )2

2(b − a)
≤ EsR(γ ),

hence the above inequalities are indeed equalities, and γ is affinely parameterized.
Now, assume by contradiction that ρ : [a, b] 
→ M connects P and Q and satisfies

;(ρ) < ;(γ ). By Corollary A.3, we can assume that ρ is affinely parameterized, hence
EsR(ρ) < EsR(γ ). This is a contradiction, and we are done. �

For q0 ∈M and r ∈ R+, the open ball Br(q0) is defined by

Br(q0) = {q1 : dist(q0, q1) < r}.
Corollary 5.6. Suppose that there exists an affinely parameterized length minimizer γ :
[a, b] 
→M between q0 and q1 which is not a normal extremal; set r = dist(q0, q1). Then,
any submanifold Q through q1 which is transversal to D at q1 has non-empty intersection
with the open ball Br(q0).

Proof. By contradiction, suppose that we can find a submanifold Q through q1 which is
transversal to D at q1 and disjoint from the open ball Br(q0). It follows that γ is a length
minimizer between the point q0 and the submanifold Q, hence by Lemma 5.5, γ is a
minimum point for the action functional in H 1

q0,Q([a, b],D,M). By possibly considering
a small portion ofQ around q1, we can assume thatQ is everywhere transversal toD. From
Proposition 5.4, it follows then that γ is a normal geodesic, which is a contradiction. �
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Remark 5.7. Proposition 5.4 can also be used to establish the smoothness of abnormal
extremizers, which is in general an open question. Observe indeed that its statement can be
rephrased as follows. Let γ : [a, b] →M be an affinely parameterized length-minimizer
connecting q0 and q1 inM; set r = dist(q0, q1). If there exists a manifold Q transverse to
D passing through q1 which does not intercept the open ball B(q0; r) then γ is a normal
extremal and, consequently, it is smooth.

As a corollary of Proposition 5.2, we also obtain an alternative proof of a result of Liu
and Sussmann [9] that gives necessary conditions for length minimizing.

Corollary 5.8. An affinely parameterized length minimizer is either an abnormal minimizer
or a normal geodesic.

Proof. It follows immediately from Definition 2.8 and Proposition 5.2 and the fact that
affinely parameterized length minimizers are minima of the sub-Riemannian action func-
tional. �

The solutions of sub-Riemannian geodesic problem with variable endpoints in the case
that the end-manifold is one-dimensional has a physical interpretation in the context of
general relativity (see [5,6]). Such geodesics can be interpreted as the solution of a general
relativistic brachistochrone problem in a stationary Lorentzian manifold.

Appendix A. Affine parameterization of horizontal curves

In this appendix, we show that every horizontal curve in a sub-Riemannian manifold can
be obtained as the reparameterization of an affinely parameterized horizontal curve.

Given two absolutely continuous curves γ : [a, b] 
→M and µ : [c, d] 
→M, we say
that γ is a reparameterization of µ if there exists an absolutely continuous, non-decreasing
and surjective map σ : [a, b] 
→ [c, d] such that γ = µ ◦ σ . It can be proven that in this
case γ̇ = (µ̇ ◦ σ)σ̇ almost everywhere.

Proposition A.1. Let (M, ḡ) be a Riemannian manifold, γ : [a, b] 
→M an absolutely
continuous curve. Then, there exists a unique pair of absolutely continuous maps µ :
[0, L] 
→ M and σ : [a, b] 
→ [0, L], with σ non-decreasing and surjective, such that
ḡ(µ̇(t), µ̇(t)) ≡ 1 almost everywhere on [0, L] and γ = µ ◦ σ .

Proof. Suppose that the pair µ, σ satisfying the thesis is found; then we obtain easily

σ(t) = ;(γ |[a,t]) =
∫ t

a

ḡ(γ̇ , γ̇ )1/2 dt. (A.1)

Since σ is surjective, this proves the uniqueness of the pair.
As to the existence, set L = ;(γ ) and define σ as in (A.1). Obviously, σ is absolutely

continuous, non-decreasing and surjective.
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Suppose that σ(s) = σ(t) for some s, t ∈ [a, b] with s < t . Then, ;(γ |[s,t]) = 0,
and therefore γ (s) = γ (t). It follows that there exists a function µ : [0, L] 
→ M with
µ ◦ σ = γ . The curve µ is Lipschitz continuous, hence absolutely continuous; for, if
s, t ∈ [0, L], let s1, t1 ∈ [a, b] be such that σ(s1) = s and σ(t1) = t . Then

dist(µ(s), µ(t)) = dist(γ (s1), γ (t1)) ≤ ;(γ |[s1,t1]) = |σ(s1)− σ(t1)| = |s − t |.
We are left with the proof that ḡ(µ̇, µ̇) ≡ 1 almost everywhere. To see this, let t ∈ [0, L]
be chosen and let t1 ∈ [a, b] be such that t = σ(t1). Then, we have

∫ t

0
ḡ(µ̇, µ̇)1/2 dr = ;(µ|[0,t]) = ;(γ |[a,t1]) = σ(t1) = t. (A.2)

The conclusion follows by differentiating (A.2) with respect to t . �

Lemma A.2. LetM be a smooth manifold and D ⊂ TM be a smooth distribution. Let
µ : [a, b] 
→M be an absolutely continuous curve; ifµ admits a reparameterization which
is horizontal, then µ is horizontal.

Proof. Let σ : [c, d] 
→ [a, b] be an absolutely continuous non-decreasing surjective map
with γ = µ ◦ σ horizontal. Define

X= {t ∈ [c, d] : the equality γ̇ (t) = µ̇(σ (t))σ̇ (t) fails to hold},
Y = {t ∈ [c, d] : σ̇ (t) = 0}.

Clearly, µ is horizontal outside σ(X ∪ Y ); to conclude the proof it suffices to show that
σ(X∪Y ) has null measure. To see this, observe that X has null measure and therefore σ(X)

has null measure. Moreover, since σ̇ = 0 in Y , it is not difficult to show that σ(Y ) has null
measure, and we are done. �

Corollary A.3. Let (M,D, g) be a sub-Riemannian manifold and γ a horizontal curve in
M. Then, γ is the reparameterization of a unique horizontal curve µ : [0, L] 
→M such
that g(µ̇, µ̇) ≡ 1 almost everywhere.

Proof. Let ḡ be any Riemannian extension of g and apply Proposition A.1. The curve µ

thus obtained is horizontal by Lemma A.2. �

Appendix B. Local minimality of normal geodesics

The aim of this section is to prove that a sufficiently small segment of a sub-Riemannian
normal geodesic is a distance minimizer between an initial submanifold and a point. We
will simply adapt the proof of local optimality presented in [9, Appendix C].

Proposition B.1. Let (M,D, g) be a sub-Riemannian manifold, P ⊂M a submanifold
and γ : [a, b] 
→ M a normal geodesic with γ (a) ∈ P and such that there exists a
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Hamiltonian lift Γ : [a, b] 
→ TM∗ of γ with Γ (a)|Tγ (a)P = 0. Then, for ε > 0 small
enough, γ |[a,a+ε] is a length minimizer between P and γ (a + ε).

Proof. We can assume without loss of generality that g(γ̇ , γ̇ ) = 1. Let S ⊂ M be
a codimension 1 submanifold containing a neighborhood of γ (a) in P and such that
Γ (a)|Tγ (a)S = 0. The existence of such a submanifold is easily proved using a coordinate

system inM adapted toP around γ (a). Observe that by Remark 5.3, we have g−1(Γ (a)|D,

Γ (a)|D) = 1.
Let λ : S 
→ TM∗ be a 1-form inM along S such that λ(x)|TxS = 0, g−1(λ(x)|D,

λ(x)|D) = 1 for all x ∈ S and such that λ(γ (a)) = Γ (a). Let U ⊂ S be a sufficiently
small open subset containing γ (a) and let ε > 0 be sufficiently small. Consider the map
Φ :]a − ε, a + ε[×U 
→ TM∗ such that t 
→ Φ(t, x) is a solution of the sub-Riemannian
Hamiltonian H defined in (7) and Φ(a, x) = λ(x) for all x ∈ U . Let F = π ◦ Φ, where
π : TM∗ 
→M is the projection.

By Remark 5.3, Γ (a)(γ̇ (a)) = 1, which implies that Tγ (a)M = Tγ (a)S ⊕ (Rγ̇ (a)). It
follows easily that the differential of F at (a, γ (a)) is an isomorphism, and by the inverse
function theorem by possibly passing to smaller ε and U , F is a diffeomorphism between
]a− ε, a+ ε[×U and an open neighborhood V of γ (a) inM. By possibly taking a smaller
V , we can assume that V ∩ P ⊂ S.

We define a vector field X, a 1-form λ and a smooth map τ on V by setting

τ(F (t, x)) = t, X(F (t, x)) = d

dt
F (t, x), λ(F (t, x)) = Φ(t, x)

for all (t, x) ∈]a − ε, a + ε[×U . Since H ◦Φ does not depend on t , it follows easily that

g−1(λ|D, λ|D) = 1. (B.1)

We prove next that λ = dτ . To this aim, let ΨX denote the flow of X, defined on an open
subset ofR×V ; for s ∈ R, we set Ψ s

X = ΨX(s, ·). Clearly, t 
→ F(t, x) is an integral curve
of X, and therefore we have τ ◦ Ψ s

X = s + τ , hence dτ is invariant by the flow of X, i.e.,

(Ψ s
X)

∗(dτ) = dτ.

We show that λ is also invariant by the flow of X; the equality λ = dτ will follow from the
fact that these two 1-forms coincide on S. For the invariance of λ, we argue as follows: let
x ∈ U , v0 ∈ TxM and v(t) = dΨ t−a

X (x)[v0]; it suffices to prove that λ(F (t, x))(v(t)) is
constant in t .

In local coordinates q = (q1, . . . , qn), v satisfies the following linear differential equa-
tion:

dv

dt
= ∂X

∂q
(v). (B.2)

For t ∈]− ε, ε[ fixed, let X1, . . . , Xn−k be an orthonormal frame forD around F(t, x); by
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Remark 5.3, we have Φ(t, x)|D = g(X(F (t, x)), ·) from which it follows:

X =
n−k∑
i=1

λ(Xi)Xi. (B.3)

From (B.1), it follows that
∑

iλ(Xi)
2 = 1, and differentiating this expression, we obtain

n−k∑
i=1

λ(Xi)
∂

∂q
(λ(Xi)) = 0. (B.4)

From (B.3) and (B.4), it follows:

λ

(
∂X

∂q

)
=

n−k∑
i=1

λ(Xi)λ

(
∂Xi

∂q

)
. (B.5)

Using the second Hamilton equation in (31), we finally get

d

dt
λ(F (t, x)) = −λ

(
∂X

∂q

)
. (B.6)

Using (B.2) and (B.6) it is easily seen that λ(F (t, x))v(t) is constant in t , and λ is invariant
by the flow of X.

The equality λ = dτ is thus proven, and by (B.1), we obtain

g−1(dτ |D, dτ |D) = 1. (B.7)

Let now µ : [a, a+ε] 
→ V be a horizontal curve with µ(a) ∈ P and µ(a+ε) = γ (a+ε).
Using (B.7), the length of µ is estimated as follows:

L(µ)=
∫ a+ε

a

‖µ̇‖dt ≥
∫ a+ε

a

dτ(µ̇(t)) dt

= τ(µ(a + ε))− τ(µ(a)) = ε = L(γ |[a,a+ε]).

This implies that γ |[a,a+ε] is a length minimizer between P and γ (a + ε) among all the
horizontal curves with image in V . The conclusion of the proof will follow from the next
lemma by possibly considering a smaller ε. �

Lemma B.2. Let (M,D, g) be a sub-Riemannian manifold and let V ⊂M be an open
subset. Given x ∈ U there exists r > 0 such that every horizontal curve µ : [a, b] 
→M
with µ(a) = x and L(µ) < r satisfies µ([a, b]) ⊂ V .

Proof. We compare the sub-Riemannian metric g with the Euclidean metric relative to an
arbitrary coordinate system around x. Let ϕ : W 
→ W̃ be a coordinate system inM with
x ∈ W , W ⊂ V and W̃ is an open neighborhood of 0 in Rn. Let B ⊂ W be the inverse
image through ϕ of a closed ball of radius s, B[ϕ(x); s] ⊂ W̃ . For m ∈ W and v ∈ TmM,
denote by ‖v‖e the Euclidean norm of the vector dφ(m)[v]. The set of vectors v ∈ D that
are tangent to the points of B with ‖v‖e = 1 form a compact subset of TM, in which the
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continuous function v 
→ g(v, v)1/2 = ‖v‖ attains a positive minimum k. Observe that for
all v ∈ D tangent to some point of B, it is ‖v‖ ≥ k · ‖v‖e.

Take r = ks > 0. If µ : [a, b] 
→ M is a horizontal curve with µ(a) = x and
µ([a, b]) � V , then there exists c ∈]a, b[ with µ([a, c] ⊂ B and γ (c) ∈ ∂B. Therefore,

L(µ) ≥ L(µ|[a,c]) ≥ kLe(ϕ ◦ µ|[a,c]) ≥ ks = r,

where Le denotes the Euclidean length of a curve. This concludes the proof. �
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